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Class of self-limiting growth models in the presence of nonlinear diffusion
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The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A
class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a
culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-
diffusion system to study the propagation of spatial front for these models.
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I. INTRODUCTION

Reaction-diffusion systems are ubiquitous in almost
branches of physics@1#, chemistry@2#, and biology@3–5#
dealing with population growth, fluid dynamics, pulse prop
gation in nerves, chemical reactions, optical, and other p
cesses. The basic equation describes the dynamics of a
variablen(x,t), a function of space and time in terms of
source term~also known as reaction term! and a diffusion
term. An important early endeavor in this direction is t
study of self-limiting growth models of which the most we
known is the Fisher equation@6,7# that takes into account
linear growth and a nonlinear decay. The model and man
its variants have found wide applications both from a th
retical and experimental point of view@4#. A notable feature
of these models is that the source or the reaction terms do
involve any explicit time dependence. On the other ha
there are situations@8–10# where the source terms conta
explicit functions of time that put a constraint on the grow
process in the long time limit. For example, the Gompe
growth @8,9# is a model used for study of growth of anima
and tumors, where the growth rate is proportional to the c
rent value, but the proportionality factor decreases expon
tially in time so that

dn

dt
5rn exp~2at !, ~1a!

wherer and a are positive experimentally determined co
stants. Similarly another type of model proposed to anal
the growth of bacterial population in culture@10# is described
by

dn

dt
5knt exp~2bt2!. ~1b!

Again k and b are positive constants required to fit the e
perimental data. An important feature of these models is
unlike the logistic growth process the asymptotic value of
density functionn depends on its initial population.

Keeping in view of these experimental observations it
therefore, worthwhile to generalize the specific cases
terms of an explicit function of timef(t) such that we write
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dn

dt
5rnf~ t !, ~2!

wherer is a constant for the growth process andf(t) may be
of the type ~i! f(t)51 for exponential growth,~ii ! f(t)
5exp(2at) for Gompertz growth,~iii ! f(t)5t exp(2bt2)
for bacterial growth, etc.

The object of the present paper is to study a reacti
diffusion system with a reaction term describing a class
self-limiting growth processes~2!. Since in many living or-
ganisms concentration dependent diffusivity@4,5,11–15# has
been found to be essential to the modeling of reacti
diffusion systems we investigate the interplay of this nonl
ear diffusion and self-limiting growth process in the dyna
ics. We show that the model and its variant with a fin
memory transport@16–25# admit of exact solutions. The de
pendence of the rate of spread of the wave front on vari
parameters is explored.

II. THE REACTION-DIFFUSION SYSTEM

We consider a reaction-diffusion system with a sou
term describing self-limiting growth and with a nonline
diffusion term in the following form:

]n~x,t !

]t
5rnf~ t !1

]

]x
Dn

]n

]x
, ~3!

whereD is the diffusion coefficient. Our primary aim in thi
section is to provide an exact solution of Eq.~3!. To this end
we first make use of the following transformation:

n~x,t !5ũ~x,t !expS r E
0

t

f~ t8!dt8D ~4!

in Eq. ~3! to obtain

]ũ~x,t !

]t
5D expS r E

0

t

f~ t8!dt8D ]

]x H ũ
]ũ

]xJ . ~5!

We now introduce the scaled time variablet as

t5DE
0

t

f ~ t8!dt8[G~ t ! ~say!, ~6a!

where
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f ~ t !5expF r E
0

t

f~ t8!dt8G . ~6b!

This reduces Eq.~5! to the following form:

]u~x,t!

]t
5

]

]x H u~x,t!
]u~x,t!

]x J ~7!

with ũ(x,t)[ũ@x,G21(t)#5u(x,t) where timet has been
expressed as an inverse functionG21(t) according to Eqs.
~6a! and ~6b!.

Equation~7! is the well-known Boltzmann nonlinear dif
fusion equation@1,26#. Now subject to the initial condition o
a unit point source at the origin,

n~x,0!5d~x!5ũ~x,0!5u~x,0!, ~8!

we solve Eq.~7! under the following boundary conditions:

lim
x→6`

u~x,t!50, ;t.0 ~9!

and

E
2`

1`

u~x,t!dx51, ;t.0. ~10!

FIG. 1. Evolution of spatial front in time for the model wit
f(t)51. ~a! The populationn(x,t) is plotted againstx for different
times usingr 51.0 andD51.0. ~b! The same as in~a! but for r
50.001~arbitrary units!.
06190
Next we seek the similarity solution of the nonlinear d
fusion Eq. ~7!. We make use of the well-known similarit
transformation@1,5,26,27#:

u5t21/3v~z! and z5xt21/3 ~11!

in Eq. ~7! to obtain

3
d

dzS v
dv
dzD1v1z

dv
dz

50. ~12!

On integration, Eq.~12! yields

FIG. 2. Evolution of spatial front in time for the model wit
f(t)5t exp(2bt2). ~a! The populationn(x,t) is plotted againstx
for different times usingr 51.0, D51.0, andb50.1. ~b! The same
as in ~a! but for b50.01. ~c! The populationn(x,t) is plotted
againstx at t51.0 for differentr usingD51.0 andb50.01 ~arbi-
trary units!.
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3S v
dv
dzD1zv50. ~13!

Since we are interested in the symmetric solutions w
v8(0)50, we have put the integration constant zero in go
from Eq. ~12! to Eq. ~13!. On further integration Eq.~13!
results in the solution

v~z!5~A22z2!/6, uzu,A

50, uzu.A, ~14a!

whereA is a constant that can be determined from the c
dition ~10! to obtain

A5~9/2!1/3. ~14b!

Therefore the solution of Eq.~7! in x andt is given by

u~x,t!5
1

6t
@A2t2/32x2#, uxu,At1/3

50, uxu.At1/3. ~15!

It is interesting to note that by virtue of the relations~6a!
and~6b! t is dependent onr andf(t) that control the growth
and self-limiting factors, respectively, of the source ter
This implies that the shock-wave-like behavior with prop
gating wave front atx5xf5At1/3 as evident from the simi-
larity solutions~15! critically depends on the reaction term
Specifically, the wave front propagates in the medium w
speed

dxf

dt
5

1

3 S 9D

2 D 1/3

f ~ t !F E
0

t

f ~ t8!dt8G22/3

, ~16!

where f (t) is given by Eq.~6a! and in turn depends on th
functional form off(t).

We now consider two specific cases to illustrate the s
tial propagation patterns.

~i! f(t)51. For a constant value off the model suggest
an exponential growth. The relation~6a! in this case can then
be utilized to obtainf (t)5exp(rt) so thatt5(D/r )@exp(rt)
21#. Putting this expression fort in the solution~15! we
have after using Eq.~4!

n~x,t !5
@A2$~D/r !@exp~rt !21#%2/3#2x2

~6D/r !@exp~rt !21#exp~2rt !
. ~17!
06190
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This solution clearly has a sharp wave front atxf5At1/3,
which propagates at a speed

dxf

dt
5

1

3
A~Dr 2!1/3exp~rt !@exp~rt !21#22/3. ~18!

To illustrate the spatial propagation of the populati
n(x,t) in time we plot in Fig. 1 the spatial shock-wave-lik
patterns forr 51.0 andD51.0. It is apparent that the shar
peaked distribution att50 starts spreading relatively slowl
with peak atx50 diminishing with time up to a periodt
50.1. Beyond this time the spatial growth of population b
comes comparatively large and it diverges due to the co
bined effect of exponential growth and nonlinear diffusio
For a much lower growth rate (r 50.001), however, the
population spreads monotonically due to the nonlinear dif
sion that overwhelms the effect of growth process. This
evident in Fig. 1~b!.

~ii ! f(t)5t exp(2bt2). With the above expression fo
f(t) for bacterial self-limiting growth we obtain from Eqs
~6a! and ~6b!

f ~ t !5exp$~2r /2b!@exp~2bt !21#% ~19!

and

t5D exp~r /2b!E
0

t

exp@~2r /2b!exp~2bt8!#dt8.

~20!

By definingz5(r /2b)exp(2bt) the above expression can b
reduced to the following form:

t52D
exp~r /2b!

b E
(r /2b)

(r /2b)exp(2bt)exp~2z!

z
dz. ~21!

The integral in Eq.~21! can be put into a standard form wit
the help of Ei function@28# so thatt can be expressed as

t5D
exp~r /2b!

b
@Ei~2r /2b!2Ei„~2r /2b!exp~2bt !…#.

~22!

The corresponding densityn(x,t) and the speed of the wav
front dxf /dt at xf are given by
n~x,t !5
A2@Dexp~r /2b!/b#2/3@Ei~2r /2b!2Ei„2~r /2b!exp~2bt !…#2/32x2

~6D/b!@Ei~2r /2b!2Ei„~2r /2b!exp~2bt !…#exp@~r /2b!exp~2bt !#
~23!
red
and

dxf

dt
5AS D

exp~r /2b!

b D 1/3 d

dt
@Ei~2r /2b!

2Ei„~2r /2b!exp~2bt !…#1/3, ~24!
respectively.
In Figs. 2~a! and 2~b! we show the shock-wave-like

spread of population by plottingn(x,t) vs x for several val-
ues of time forD51 andr 51. Sinceb puts a limit to the
growth at large time the peak ofn(x,t) at x50 as shown in
Fig. 2~a! (b50.1) does not increase too much as compa
9-3
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to the earlier case considered in Fig. 1~a!. It has been ob-
served that for a unique value ofb>1.0 there is a monotonic
decrease in the peak populationn(x,t) at x50. For smaller
values ofb @Fig. 2~b!# the spread is similar to that in Fig
1~a!. In Fig. 2~c! we exhibit the spatial front propagation fo
several values of growth rater at a timet51.0 keepingD
51 andb50.01. It is apparent that with increase ofr the
reaction dominates over diffusion so that the peak popula
at x50 increases compared to spreading.

III. EFFECT OF FINITE MEMORY TRANSPORT

We now generalize the proposed reaction-diffusion mo
to include the effect of finite memory transport. It has be
observed that an animal’s movement at a particular instan
time often depends on its motion in the immediate past. T
results in a delay in population flux, or a memory in t
diffusion coefficient. A number of attempts have been ma
in the recent literature@16–25# to analyze the delayed popu
lation growth in several models and related context in h
conduction and transport processes. To consider a fi
memory in the present model we modify the nonlinear d
fusion term in Eq.~3! to the following form:

]n~x,t !

]t
5rn~x,t !f~ t !1

]

]x FDgE
0

t

exp@2g~ t2t!#

3n~x,t!
]n~x,t!

]x
dtG , ~25!

whereg refers to the inverse of relaxation time. The pop
lation flux takes into account the relaxation effect due to
delay of the particles in adopting a definite direction
propagation. Differentiating both sides of the above equa
with respect tot and using it again we obtain

]2n

]t2
5~rf2g!

]n

]t
1~r ḟ1rfg!n1

]

]x FDgn
]n

]xG .
~26!
fu
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In the limit of vanishing relaxation time, i.e., 1/g→0 Eq.
~26! reduces to Eq.~3!. When memory effects are taken int
account, the dispersal of the organisms are not mutually
dependent. Hence the correlation between the succes
movement of the diffusing particles results in a delay in t
transport. Thus Eq.~26! is a typical form of a delayed trans
port equation.

We now consider a specific casef(t)51. Substitution of
the traveling wave formN(z)@5n(x,t)# with z5x1ct sat-
isfies

c2
]2N

]z2
5c~r 2g!

]N

]z
1rgN1Dg

]

]z S N
]N

]z D , ~27!

wherec is the speed of the traveling wave to be determin
We now consider the trial solution of Eq.~27! of the form

N(z)5N0 exp(szb) subject to the initial condition that atz
50, N5N0, where s and b are positive constants to b
determined. Substitution of this solution in Eq.~27! yields
the following relation:

@c2s2b2z2(b21)1c2sb~b21!z(b22)2csb~r 2g!z(b21)

2rg#exp~szb!2DgN0sb@2sbz2(b21)

1~b21!z(b22)#exp~2szb![L~z!50. ~28!

For L(z)50, for all z, the coefficients of exp(szb) and
exp(2szb) within the square brackets must vanish identica
For this the only acceptable solution forb is b51. We obtain

2s2DgN050 ~29a!

and

c2s22cs~r 2g!2rg50. ~29b!

From the above two equations the solution fors is given by
s5
c@~1/g!2~1/r !#1$c2@~1/g!2~1/r !#214/r @~c2/g!12DN0#%1/2

2@~c2/gr !1~2DN0 /r !#
. ~30!
ave

st
In the limit of instantaneous relaxation, i.e., 1/g→0 Eq.~30!
yields

s5
c$211@11~DN0r /c2!#1/2%

4DN0
. ~31!

Furthermore the above expression in the limit of weak dif
sionD→0 we obtain from Eq.~31! after a Taylor expansion

s5
r

c
. ~32!
-

To determine the speed of the propagation of the w
front we now rearrange the solution fors in Eq. ~30! to
obtain

c5
~r 2g!1@~r 2g!214~rg22s2DgN0!#1/2

2s
. ~33!

For real values ofc, the quantity inside the square root mu
be positive, which determines the minimum value ofc for
s5r /c @Eq. ~32!# as
9-4
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cmin5
2r 2DgN0

~r 1g!2
. ~34!

Equation ~27!, therefore, admits of an exact travelin
wave-like solution:

N~z!

5N0expFc~r 2g!1@c2~r 2g!214rg~c212DgN0!#1/2

2~c212DgN0!
Gz.

~35!

It is interesting to observe that the speed of the trave
wave front not only depends on nonlinear diffusion a
growth rate but also on the initial concentration and memo
A comparison of the solutions in this section and in the p
ceding one shows that Eq.~35! does not reduce to Eq.~17! in
the limit of vanishing relaxation time (1/g→0) although Eq.
~26! goes over to Eq.~3! under this condition. This is be
cause of the fact that the nature of the partial differen
equation changes due to the inclusion of relaxation terms
also the boundary conditions for the shock-wave-like ‘‘d
fusing solutions’’~17! are different for the traveling wave
front solution~35!. The nature of the two solutions are thu
-

ao

i-

in

s

l
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generically different. We point out in passing that thedep
dence on initial concentration on speed as shown in Eq.~34!
is rather an unusual feature in reaction-diffusion system.

IV. CONCLUSIONS

In this paper we have analyzed a class of reacti
diffusion systems in which the kinetic term describes t
self-limiting growth processes of the Gompertz type and
an explicit function of time. We have shown that the mod
can be solved exactly to analyze the spatial front propaga
problem. To make the model more realistic we have includ
the effect of finite relaxation to concentration-dependent d
fusive processes. In view of the fact that the source te
have their direct relevance on experimental measuremen
animal and tumor growth or bacterial culture we think th
the solutions discussed in this paper will be pertinent in
context of reaction-diffusion systems, in general.
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